960化工网
Conjugating a groove-binding motif to an Ir(iii) complex for the enhancement of G-quadruplex probe behavior†
Modi Wang,Zhifeng Mao,Tian-Shu Kang,Chun-Yuen Wong,Chung-Hang Leung,Dik-Lung Ma
Chemical Science Pub Date : 01/28/2016 00:00:00 , DOI:10.1039/C6SC00001K
Abstract

In this study, the reported G-quadruplex groove binder benzo[d,e]isoquinoline was linked to a cyclometallated Ir(III) complex to generate a highly selective DNA probe 1 that retains the favorable photophysical properties of the parent complex. The linked complex 1 showed advantages of both parent complex 2 and groove binder 3. Similar to 3, the conjugated complex 1 exhibits a superior affinity and selectivity for G-quadruplex DNA over other conformations of DNA or proteins, with the fold enhancement ratio obviously improved compared with parent complex 2. The molecular modelling revealed a groove-binding mode between complex 1 and G-quadruplex. Meanwhile 1 also possesses the prominent advantages of transition metal complex probes such as a large Stokes shift and long lifetime phosphorescence, which could be recognized in strong fluorescence media through time-resolved emission spectroscopy (TRES). We then employed 1 to develop a detection assay for AGR2, a potential cancer biomarker, as a “proof-of-principle” demonstration of the application of a linked complex for DNA-based detection in diluted fetal bovine serum. We anticipate that this conjugation method may be further employed in the development of DNA probes and have applications in label-free DNA-based diagnostic platforms.

Graphical abstract: Conjugating a groove-binding motif to an Ir(iii) complex for the enhancement of G-quadruplex probe behavior
平台客服
平台客服
平台在线客服