In the present work, we report fabrication and field emission responses of 3D copper phthalocyanine (CuPc) nanotip arrays synthesized over nanotube walls by facile plasma treatment. Significant field emission enhancement is confirmed for a nanotip–nanotube hybrid system (turn-on field 4.2 V μm−1@10 μA cm−2) as compared to pristine CuPc nanotubes (turn-on field 6.8 V μm−1@10 μA cm−2). Root of the observed enhanced cold cathode emission performances is further probed by a finite element method based simulation protocol that computed local electric field distribution for a single tube without and with plasma etching in a manner parallel to the experimental setup. Our obtained results strongly suggest that CuPc nanotip–nanotube hybrid nanostructures are a major potential candidate as field emitters for vacuum nanoelectronics and cold cathode based emission display applications.

