960化工网
Ligand-centered electrochemical processes enable CO2 reduction with a nickel bis(triazapentadienyl) complex†
Zachary Dubrawski,Joshua Heidebrecht,Braulio M. Puerta Lombardi,Alexander S. Hyla,Janina Willkomm,Chase L. Radford,Jian-Bin Lin,Gregory C. Welch,Sathish Ponnurangam,Roland Roesler,Warren E. Piers
Sustainable Energy & Fuels Pub Date : 03/21/2019 00:00:00 , DOI:10.1039/C8SE00623G
Abstract

We report the synthesis of Ni(TAPPy)2 (TAPPy = 1,3,5-triazapentadienyl-2,4-bis(2-pyridyl)) and its reactivity with CO2 under reducing conditions. Electrochemical reduction of Ni(TAPPy)2 under inert gas reveals that the complex accommodates up to two additional electrons, with DFT calculations indicating that electron density is delocalized almost exclusively onto the TAPPy ligand framework. The singly reduced product [K(crypt)][Ni(TAPPy)2] (crypt = 2.2.2-cryptand) has been synthesized, and its EPR data is consistent with having ligand-based radical anion character. Controlled potential electrolysis experiments reveal that reduced Ni(TAPPy)2 converts CO2 to form CO; however, spectroscopic and computational data indicate that deactivation readily occurs to form Ni(L)(CO)n compounds, CO32−, and carboxylated (RCOO) ligand decomposition products. This study highlights that redox activity at the ligand can play an important role during the reduction of CO2 using transition metal complexes.

Graphical abstract: Ligand-centered electrochemical processes enable CO2 reduction with a nickel bis(triazapentadienyl) complex
平台客服
平台客服
平台在线客服