960化工网
Synthesis of Ni-doped ZnO nanostructures by low-temperature wet chemical method and their enhanced field emission properties†
Amit Kumar Rana,Yogendra Kumar,Mahendra A. More,Dattatray J. Late,Parasharam M. Shirage
RSC Advances Pub Date : 10/17/2016 00:00:00 , DOI:10.1039/C6RA21190A
Abstract

In this study, we report an enhancement in the field emission (FE) properties of ZnO nanostructures obtained by doping with Ni at a base pressure of ∼1 × 10−8 mbar, which were grown by a simple wet chemical process. The ZnO nanostructures exhibited a single-crystalline wurtzite structure up to a Ni doping level of 10%. FESEM showed a change in the morphology of the nanostructures from thick nanoneedles to nanoflakes via thin nanorods with an increase in the Ni doping level in ZnO. The turn-on field required to generate a field emission (FE) current density of 1 μA cm−2 was found to be 2.5, 2.3, 1.8 and 1.7 V μm−1 for ZnO (Ni0%), ZnO (Ni5%), ZnO (Ni7.5%) and ZnO (Ni10%), respectively. A maximum current density of ∼872 μA cm−2 was achievable, which was generated at an applied field of 3.1 V μm−1 for a Ni doping level of 10% in ZnO. Long-term operational current stability was recorded at a preset value of 5 μA for a duration of 3 h and was found to be very high. The experimental results indicate that Ni-doped ZnO-based field emitters can open up many opportunities for their potential use as an electron source in flat panel displays, transmission electron microscopy, and the generation of X-rays. Thus, the simple low-temperature (∼80 °C) wet chemical synthesis approach and the robust nature of the ZnO nanostructure field emitter can provide prospects for the future development of cost-effective electron sources.

Graphical abstract: Synthesis of Ni-doped ZnO nanostructures by low-temperature wet chemical method and their enhanced field emission properties
平台客服
平台客服
平台在线客服