960化工网
Achieving dynamic behaviour and thermal expansion in the organic solid state via co-crystallization†
Kristin M. Hutchins,Ryan H. Groeneman,Eric W. Reinheimer,Dale C. Swenson,Leonard R. MacGillivray
Chemical Science Pub Date : 05/26/2015 00:00:00 , DOI:10.1039/C5SC00988J
Abstract

Thermal expansion involves a response of a material to an external stimulus that typically involves an increase in a crystallographic axis (positive thermal expansion (PTE)), although shrinking with applied heat (negative thermal expansion (NTE)) is known in rarer cases. Here, we demonstrate a means to achieve dynamic molecular motion and thermal expansions in organic solids via co-crystallizations. One co-crystal component is known to exhibit dynamic behaviour in the solid state while the second, when varied systematically, affords co-crystals with linear thermal expansion coefficients that range from colossal to nearly zero. Two co-crystals exhibit rare NTE. We expect the approach to guide the design of molecular solids that enable predesigned motion related to thermal expansion processes.

Graphical abstract: Achieving dynamic behaviour and thermal expansion in the organic solid state via co-crystallization
平台客服
平台客服
平台在线客服