960化工网
Effective pair potential between charged nanoparticles at high volume fractions†
Guillaume Bareigts,Christophe Labbez
Physical Chemistry Chemical Physics Pub Date : 01/20/2017 00:00:00 , DOI:10.1039/C6CP08056A
Abstract

Simulations of charged colloidal dispersions are technically challenging. One possible workaround consists in reducing the system to the colloids only, whose interactions are described through an effective pair potential, wf. Still, the determination of wf is difficult mainly because it depends on the colloidal density, ϕ. Here we propose to calculate wf from simulations of a pair of colloids placed in a cubic box with periodic boundary conditions. The variation in ϕ is mimicked by an appropriate change in the concentration of counterions neutralized by an homogeneous background charge. The method is tested at the level of the primitive model. A good description of the structure of the colloidal dispersion is obtained in the low and high coupling regimes, even at high ϕ (≈30%). Furthermore, the method can easily be used in popular molecular simulation program packages and extended to non-spherical objects.

Graphical abstract: Effective pair potential between charged nanoparticles at high volume fractions
平台客服
平台客服
平台在线客服