960化工网
Wear prediction of 3D-printed acrylonitrile butadiene styrene-carbon nanotube nanocomposites at elevated temperatures
KamilFeratoglu,IlyasIstif,OmerYunusGumus
Journal of Polymer Engineering Pub Date : 03/16/2023 00:00:00 , DOI:10.1515/polyeng-2022-0225
Abstract
In this study, multi-wall carbon nanotube (MWCNT) reinforced acrylonitrile butadiene styrene (ABS) nanocomposite filaments are produced. Filaments are examined through thermogravimetric analysis (TGA) and definitive scanning calorimetry (DSC) analysis. Produced nanocomposite filaments are used in the fused deposition modeling (FDM) process to manufacture parts. Wear tests are conducted on 3D-printed parts using wear test apparatus with an attached heating module under different ambient temperatures. Hence, the influence of CNT reinforcement, along with different FDM process parameters and varying test conditions on the wear behavior of 3D-printed ABS-CNT parts, are examined. Worn surfaces of the specimens are examined by scanning electron microscopy (SEM). Nonlinear autoregressive exogenous (NARX) models are proposed for the prediction of the wear behavior of 3D-printed ABS-CNT nanocomposites. While wear rate is taken as output, ambient temperature and amount of nanofiller are accounted as input parameters along with the variation of coefficient of friction (COF) which is obtained from measured frictional force and three input-one output model structure is proposed for NARX. The use of multiple input-single output (MISO) model structure and examining the wear behavior of 3D-printed ABS-CNT samples under different wear test conditions with different FDM process parameters are the novelties in this work.
平台客服
平台客服
平台在线客服