960化工网
Few-layer MoS2nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells†
Sheng-Yen Tai,Shu-Wei Chou,Jeng-Yu Lin
Journal of Materials Chemistry Pub Date : 09/26/2012 00:00:00 , DOI:10.1039/C2JM35447K
Abstract

In the current study, the nanocomposite of molybdenum disulfide and multi-walled carbon nanotubes (MWCNT@MoS2) was proposed for the first time as a counter electrode (CE) catalyst in dye-sensitized solar cells (DSSCs) to speed up the reduction of triiodide (I3) to iodide (I). This novel catalyst was synthesized by simply mixing MWCNTs and MoS2 in an acidic solution and then converting the solid intermediate into the MWCNT@MoS2 nanocomposite in a H2 flow at 650 °C. X-ray powder diffraction, Raman and X-ray photoemission spectroscopy confirmed the composition and the structure of the MWCNT@MoS2 nanocomposite. The microstructure details of the nanocomposite were studied by transmission electron microscopy, showing that only a few-layers of the MoS2 nanosheets were formed on the MWCNT surface. This unique structure is beneficial to the improvement of the catalytic activity of MWCNT@MoS2 towards the reduction of I3. The extensive cyclic voltammograms (CV) showed that the cathodic current density of the MWCNT@MoS2 CE was higher than those of MoS2, MWCNT and sputtered Pt CEs due to the increased active surface area of the former. Moreover, the peak current densities of the MWCNT@MoS2 CE showed no sign of degradation after consecutive 100 CV tests, suggesting the great electrochemical stability of the MWCNT@MoS2 CE. Furthermore, the MWCNT@MoS2 CE demonstrated an impressive low charge-transfer resistance (1.69 Ω cm2) for I3 reduction. Finally, the DSSC assembled with the MWCNT@MoS2 CE showed a high power conversion efficiency of 6.45%, which is comparable to the DSSC with Pt CE (6.41%).

Graphical abstract: Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells
平台客服
平台客服
平台在线客服