We present a comprehensive analysis for pore structures of cage-type ordered mesoporous carbons (OMCs) using various electron microscopy techniques in addition to conventional nitrogen adsorption isotherm studies. The benefits and drawbacks of these techniques are evaluated, and it is shown that they are complementary to each other. Knowledge of the structural properties, pore sizes, and connectivity gives insight into the synthesis strategies and how they are affecting the material properties that are useful within the possible applications. Herein, focus is put on the two OMCs with Im
m and Fm
m symmetries specified by FDU-16 and FDU-18. The central techniques used in this study are high resolution scanning electron microscopy combined with cross-section polisher and three-dimensional reconstruction methods (electron tomography and electron crystallography) based on transmission electron microscopy observations.