找化学品上960化工网!
960化工网
期刊名称:ACS Applied Bio Materials
期刊ISSN:2576-6422
期刊官方网站:http://pubs.acs.org/journal/aabmcb
出版商:American Chemical Society (ACS)
出版周期:月
影响因子:0
始发年份:2018
年文章数:0
是否OA:否
A Unification of Nanotopography and Extracellular Matrix in Electrospun Scaffolds for Bioengineered Hepatic Models
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-07 , DOI: 10.1021/acsabm.3c00032
YunxiGao,ThomasSRBate,AnthonyCallanan
Donor liver shortage is a crucial global public health problem as whole-organ transplantation is the only definitive cure for liver disease. Liver tissue engineering aims to reproduce or restore function through in vitro tissue constructs, which may lead to alternative treatments for active and chronic liver disease. The formulation of a multifunctional scaffold that has the potential to mimic the complex extracellular matrix (ECM) and their influence on cellular behavior, are essential for culturing cells on a construct. The separate employment of topographic or biological cues on a scaffold has both shown influences on hepatocyte survival and growth. In this study, we investigate both of these synergistic effects and developed a new procedure to directly blend whole-organ vascular perfusion-decellularized rat liver ECM (dECM) into electrospun fibers with tailored surface nanotopography. Water contact angle, tensile test, and degradation studies were conducted to analyze scaffold hydrophilicity, mechanical properties, and stability. The results show that our novel hybrid scaffolds have enhanced hydrophilicity, and the nanotopography retained its original form after hydrolytic degradation for 14 days. Human hepatocytes (HepG2) were seeded to analyze the scaffold biocompatibility. Cell viability and DNA quantification imply steady cell proliferation over the culture period, with the highest albumin secretion observed on the hybrid scaffold. Scanning electron microscopy shows that cell morphology was distinctly different on hybrid scaffolds compared to control groups, where HepG2 began to form a monolayer toward the end of the culture period; meanwhile, typical hepatic markers and ECM genes were also influenced, such as an increasing trend of albumin appearing on the hybrid scaffolds. Taken together, our findings provide a reproducible approach and utilization of animal tissue-derived ECM and emphasize the synergism of topographical stimuli and biochemical cues on electrospun scaffolds in liver tissue engineering.
An Effective Approach to the Disinfection of Pathogens: Cationic Conjugated Polyelectrolytes and Oligomers
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-07-07 , DOI: 10.1021/acsabm.2c01011
KemalKaya,MohammedKhalil,EvaYChi,DavidGWhitten
The synthetic cationic conjugated polyelectrolytes and oligomers have demonstrated great effectiveness and versatility as antimicrobial materials. They have the ability to eliminate or render inactive various pathogens, including viruses like SARS-CoV-2, bacteria, and fungi. These pathogens can be rapidly eradicated when the polyelectrolytes and oligomers are applied as sprays, wipes, or coatings on solid surfaces. Inactivation of the pathogens occurs through two distinct processes: a non-light-activated process similar to Quats, and a more efficient and faster process that is triggered by light. These materials possess fluorescence and photosensitizing properties, enabling prolonged protection when coated on surfaces. The level of fluorescence exhibited by samples applied to nonfluorescent surfaces serves as an indicator of the coating's integrity and viability, making it easily detectable. Importantly, these materials demonstrate low toxicity towards mammalian cells and human skin, allowing for their safe use. While they can serve as durable coatings for pathogen protection, extended exposure to visible or ultraviolet light leads to their photochemical degradation. Our research also suggests that these materials act against pathogens through nonspecific mechanisms, minimizing the likelihood of pathogens developing resistance and rendering the materials ineffective.
Biobased, Macro-, and Nanoscale Fungicide Delivery Approaches for Plant Fungi Control
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-07-05 , DOI: 10.1021/acsabm.3c00171
RajShankarHazra,JayantaRoy,LongJiang,DeanCWebster,MdMukhlesurRahman,MohiuddinQuadir
In this report, two polymeric matrix systems at macro and nanoscales were prepared for efficacious fungicide delivery. The macroscale delivery systems used millimeter-scale, spherical beads composed of cellulose nanocrystals and poly(lactic acid). The nanoscale delivery system involved micelle-type nanoparticles, composed of methoxylated sucrose soyate polyols. Sclerotinia sclerotiorum (Lib.), a destructive fungus affecting high-value industrial crops, was used as a model pathogen against which the efficacy of these polymeric formulations was demonstrated. Commercial fungicides are applied on plants frequently to overcome the transmission of fungal infection. However, fungicides alone do not persist on the plants for a prolonged period due to environmental factors such as rain and airflow. There is a need to apply fungicides multiple times. As such, standard application practices generate a significant environmental footprint due to fungicide accumulation in soil and runoff in surface water. Thus, approaches are needed that can either increase the efficacy of commercially active fungicides or prolong their residence time on plants for sustained antifungal coverage. Using azoxystrobin (AZ) as a model fungicide and canola as a model crop host, we hypothesized that the AZ-loaded macroscale beads, when placed in contact with plants, will act as a depot to release the fungicide at a controlled rate to protect plants against fungal infection. The nanoparticle-based fungicide delivery approach, on the other hand, can be realized via spray or foliar applications. The release rate of AZ from macro- and nanoscale systems was evaluated and analyzed using different kinetic models to understand the mechanism of AZ delivery. We observed that, for macroscopic beads, porosity, tortuosity, and surface roughness governed the efficiency of AZ delivery, and for nanoparticles, contact angle and surface adhesion energy were directing the efficacy of the encapsulated fungicide. The technology reported here can also be translated to a wide variety of industrial crops for fungal protection. The strength of this study is the possibility of using completely plant-derived, biodegradable/compostable additive materials for controlled agrochemical delivery formulations, which will contribute to reducing the frequency of fungicide applications and the potential accumulation of formulation components in soil and water.
Biosensors Based on Graphene Oxide Functionalized with Benzothiadiazole-Derived Ligands for the Detection of Cholesterol
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-23 , DOI: 10.1021/acsabm.2c01054
NatháliaMGaldino,VirgíniaSSouza,FabianoSRodembusch,RobertaBussamara,JacksonDScholten
In this work, imidazole- or imidazolium-based benzothiadiazole ligands functionalized on graphene oxide combined with cholesterol oxidase constitute efficient, robust, and easy-to-handle materials with high biosensing activity for the detection of cholesterol by colorimetric methods. The presence of lanthanum(III) supported on graphene oxide as a possible coordinating site for the benzothiadiazole ligands was also evaluated, and its bioactivity was compared to that of the analogous material without the rare-earth metal. Our results demonstrated that graphene oxide functionalized with 4,7-bis-(imidazol-1-yl)-2,1,3-benzothiadiazole exhibited the best performance for the quantification of total cholesterol with a sensitivity of 0.0649 (with lanthanum) and 0.0618 au dL mg–1 (without lanthanum). In addition, these materials presented a better percentage of immobilization (>90%), recovered activity, resistance to storage, and detection range than materials containing 4,7-[1-carboxymethyl-(imidazol-3-ium)]-2,1,3-benzothiadiazole chloride. Therefore, the combination of GO-BTD (Im/Ac)/ChOx (with or without lanthanum) affords efficient biosensors for the colorimetric detection of cholesterol.
Conductive Bacterial Nanocellulose-Polypyrrole Patches Promote Cardiomyocyte Differentiation
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-21 , DOI: 10.1021/acsabm.3c00303
SumithraYasaswiniSrinivasan,MarinaCler,OsnatZapata-Arteaga,BernhardDörling,MarianoCampoy-Quiles,ElenaMartínez,ElisabethEngel,SoledadPérez-Amodio,AnnaLaromaine
The low endogenous regenerative capacity of the heart, added to the prevalence of cardiovascular diseases, triggered the advent of cardiac tissue engineering in the last decades. The myocardial niche plays a critical role in directing the function and fate of cardiomyocytes; therefore, engineering a biomimetic scaffold holds excellent promise. We produced an electroconductive cardiac patch of bacterial nanocellulose (BC) with polypyrrole nanoparticles (Ppy NPs) to mimic the natural myocardial microenvironment. BC offers a 3D interconnected fiber structure with high flexibility, which is ideal for hosting Ppy nanoparticles. BC-Ppy composites were produced by decorating the network of BC fibers (65 ± 12 nm) with conductive Ppy nanoparticles (83 ± 8 nm). Ppy NPs effectively augment the conductivity, surface roughness, and thickness of BC composites despite reducing scaffolds’ transparency. BC-Ppy composites were flexible (up to 10 mM Ppy), maintained their intricate 3D extracellular matrix-like mesh structure in all Ppy concentrations tested, and displayed electrical conductivities in the range of native cardiac tissue. Furthermore, these materials exhibit tensile strength, surface roughness, and wettability values appropriate for their final use as cardiac patches. In vitro experiments with cardiac fibroblasts and H9c2 cells confirmed the exceptional biocompatibility of BC-Ppy composites. BC-Ppy scaffolds improved cell viability and attachment, promoting a desirable cardiomyoblast morphology. Biochemical analyses revealed that H9c2 cells showed different cardiomyocyte phenotypes and distinct levels of maturity depending on the amount of Ppy in the substrate used. Specifically, the employment of BC-Ppy composites drives partial H9c2 differentiation toward a cardiomyocyte-like phenotype. The scaffolds increase the expression of functional cardiac markers in H9c2 cells, indicative of a higher differentiation efficiency, which is not observed with plain BC. Our results highlight the remarkable potential use of BC-Ppy scaffolds as a cardiac patch in tissue regenerative therapies.
Design and Development of Robust, Daylight-Activated, and Rechargeable Biocidal Polymeric Films as Promising Active Food Packaging Materials
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-05 , DOI: 10.1021/acsabm.3c00265
ShahidUlIslam,ZhengZhang,CunyiZhao,NichareeWisuthiphaet,NitinNitin,GangSun
The emerging infectious diseases have created one of the major practical needs to develop active packaging materials with durable antibacterial and antiviral properties for the food industry. To meet this demand, the development of new technologies applicable to food contact surfaces is highly desired but challenging. The recent discovery of the photoactive properties of vitamin K (VK) derivatives has raised great expectations as promising candidates in functional film development due to the generation of biocidal reactive oxygen species (ROS) by these compounds. Inspired by the excellent photoactivity of one of the light-stable VK derivatives, menadione (VK3), under visible daylight irradiation, we demonstrate a protocol for the fabrication of daylight-mediated biocidal packaging materials by incorporating VK3 into a poly (ethylene-co-vinyl acetate) (EVA) matrix. The VK3 (i.e., 1–5% w/w) incorporated EVA films successfully demonstrated the production of ROS and antibacterial and antiviral performance against Escherichia coli, Listeria innocua, and T7 bacteriophage, respectively, under daylight exposure conditions. The results revealed that the addition of a proper percentage of VK3 significantly enhanced the ROS productivity of the films and created a novel daylight-induced microbial killing performance on the films. The biocidal functions of the films are long-lasting and rechargeable when exposed to light repeatedly, making them a viable contender for replacing currently available conventional packaging films.
Drug Delivery on Mg-MOF-74: The Effect of Drug Solubility on Pharmacokinetics
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-08 , DOI: 10.1021/acsabm.3c00275
NeilaPederneira,KyleNewport,ShaneLawson,AliARownaghi,FatemeRezaei
Biocompatible metal–organic frameworks (MOFs) have emerged as potential nanocarriers for drug delivery applications owing to their tunable physiochemical properties. Specifically, Mg-MOF-74 with soluble metal centers has been shown to promote rapid pharmacokinetics for some drugs. In this work, we studied how the solubility of drug impacts the pharmacokinetic release rate and delivery efficiency by impregnating various amounts of ibuprofen, 5-fluorouracil, and curcumin onto Mg-MOF-74. The characterization of the drug-loaded samples via X-ray diffraction (XRD), N2 physisorption, and Fourier transform infrared (FTIR) confirmed the successful encapsulation of 30, 50, and 80 wt % of the three drugs within the MOF structure. Assessment of the drug delivery performances of the MOF under its various loadings via HPLC tests revealed that the release rate is a direct function of drug solubility and molecular size. Of the three drugs considered under fixed loading condition, the 5-fluorouracil-loaded MOF samples exhibited the highest release rate constants which was attributed to the highest degree of solubility and smallest molecular size of 5-fluorouracil relative to ibuprofen and curcumin. It was also noted that the release kinetics decreases with drug loading, due to a pharmacokinetic shift in release mechanism from singular to binary modes of compound diffusion. The findings of this study highlight the effects of drug’s physical and chemical properties on the pharmacokinetic rates from MOF nanocarriers.
Fluorometric Determination of DNA Nanostructure Biostability
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-01 , DOI: 10.1021/acsabm.3c00287
HannahTalbot,BharathRajMadhanagopal,AndrewHayden,KenHalvorsen,ArunRichardChandrasekaran
The analysis and improvement of DNA nanostructure biostability is one of the keys areas of progress needed in DNA nanotechnology applications. Here, we present a plate-compatible fluorometric assay for measuring DNA nanostructure biostability using the common intercalator ethidium bromide. We demonstrate the assay by testing the biostability of duplex DNA, a double crossover DNA motif, and a DNA origami nanostructure against different nucleases and in fetal bovine serum. This method scales well to measure a large number of samples using a plate reader and can complement existing methods for assessing and developing robust DNA nanostructures.
Graphene Oxide Hosting a pH-Sensitive Prodrug: An In Silico Investigation of Graphene Oxide-Based Nanovehicle toward Cancer Therapy
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-16 , DOI: 10.1021/acsabm.3c00276
AmenehZaboli,HeidarRaissi,HassanHashemzadeh,FarzanehFarzad
Prodrug and drug delivery systems are two effective strategies for improving the selectivity of chemotherapeutics. Herein, via molecular dynamics (MD) simulation and free energy calculation, the effectiveness of the graphene oxide (GO) decorated with the pH-sensitive prodrug (PD) molecules in cancer therapy is investigated. PEI–CA–DOX (prodrug) was loaded onto the GO surface, in which the hydrogen bonding and pi–pi stacking interactions play the main role in the stability of the GO–PD complex. Due to the strong interaction of GO and PD (about −800 kJ/mol), the GO–PD complex remains stable during the membrane penetration process. The obtained results confirm that GO is a suitable surface for hosting the prodrug and passing it through the membrane. Furthermore, the investigation of the release process shows that the PD can be released under acidic conditions. This phenomenon is due to the reduction of the contribution of electrostatic energy in the GO and PD interaction and the entry of water into the drug delivery system. Moreover, it is found that an external electrical field does not have much effect on drug release. Our results provide a deep understanding of the prodrug delivery systems, which helps the combination of nanocarriers and modified chemotherapy drugs in the future.
Polyampholytes and Their Hydrophobic Derivatives as Excipients for Suppressing Protein Aggregation
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-14 , DOI: 10.1021/acsabm.3c00213
XiandaDai,DandanZhao,KazuakiMatsumura,RobinRajan
Protein aggregation, which occurs under various physiological conditions, can affect cell function and is a major issue in the field of protein therapeutics. In this study, we developed a polyampholyte composed of ε-poly-l-lysine and succinic anhydride and evaluated its protein protection efficacy. This polymer was able to protect different proteins from thermal stress and its performance significantly exceeded that of previously reported zwitterionic polymers. In addition, we synthesized derivatives with varying degrees of hydrophobicity, which exhibited remarkably enhanced efficiency; thus, the polymer concentration required for protein protection was very low. By facilitating the retention of protein enzymatic activity and stabilizing the higher-order structure, these polymers enabled the protein to maintain its native state, even after being subjected to extreme thermal stress. Thus, such polyampholytes are extremely effective in protecting proteins from extreme stress and may find applications in protein biopharmaceuticals and drug delivery systems.
Pristine, Ni- and Zn-Doped CuSe Nanoparticles: An Antimicrobial, Antioxidant, and Cytotoxicity Study
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-08 , DOI: 10.1021/acsabm.3c00090
SefaliRPatel,SunilHChaki,RanjanKrGiri,AnkurkumarJKhimani,YatiHVaidya,ParthThakor,AnjaliBThakkar,MilindPDeshpande
The strategy of chemical coprecipitation is implemented to synthesize nanoparticles of pristine CuSe, 5 and 10% Ni-doped CuSe, and 5 and 10% Zn-doped CuSe. All of the nanoparticles are found to be near stoichiometric by the evaluation of X-ray energy using electron dispersion spectra, and the elemental mapping shows uniform distribution. By X-ray diffraction examination, all of the nanoparticles are identified as being single-phase and having a hexagonal lattice structure. Field emission microscopy with electrons in both scanning and transmission modes affirmed the spherical configuration of the nanoparticles. The crystalline nature of the nanoparticles is confirmed by the presence of spot patterns observed in the selected area electron diffraction patterns. The observed d value matches well with the d value of the CuSe hexagonal (102) plane. Findings from dynamic light scattering reveal the size distribution of nanoparticles. The nanoparticle’s stability is investigated by ζ potential measurements. Pristine and Ni-doped CuSe nanoparticles exhibit ζ potential values in the preliminary stability band of ±10 to ±30 mV, while Zn-doped nanoparticles feature moderate stability levels of ±30 to ±40 mV. The potent antimicrobial effects of synthesized nanoparticles are studied against Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Enterobacter aerogenes, and Escherichia coli bacteria. The 2,2-diphenyl-1-picrylhydrazyl scavenging test is used to investigate the nanoparticle’s antioxidant activities. The results showed the highest activity for control (Vitamin C) with an IC50 value of 43.6 μg/mL, while the lowest for Ni-doped CuSe nanoparticles with an IC50 value of 106.2 μg/mL. Brine shrimps are utilized for in vivo cytotoxicity evaluation of the synthesized nanoparticles, which demonstrates that 10% Ni- and 10% Zn-doped CuSe nanoparticles are more damaging on brine shrimp instead on other nanoparticles with a 100% mortality rate. The lung cancer cell line of human (A549) is used to investigate in vitro cytotoxicity. The results indicate that pristine CuSe nanoparticles are more effective in the context of cytotoxicity against the A549 cell lines, possessing an IC50 of 488 μg/mL. The particulars of the outcomes are explained in depth.
Soft Perfusable Device to Culture Skeletal Muscle 3D Constructs in Air
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-21 , DOI: 10.1021/acsabm.3c00215
FedericaIberite,MarcoPiazzoni,DanieleGuarnera,FrancescoIacoponi,SilviaLocarno,LorenzoVannozzi,GiacomoBolchi,FedericaBoselli,IriniGerges,CristinaLenardi,LeonardoRicotti
Devices for in vitro culture of three-dimensional (3D) skeletal muscle tissues have multiple applications, including tissue engineering and muscle-powered biorobotics. In both cases, it is crucial to recreate a biomimetic environment by using tailored scaffolds at multiple length scales and to administer prodifferentiative biophysical stimuli (e.g., mechanical loading). On the contrary, there is an increasing need to develop flexible biohybrid robotic devices capable of maintaining their functionality beyond laboratory settings. In this study, we describe a stretchable and perfusable device to sustain cell culture and maintenance in a 3D scaffold. The device mimics the structure of a muscle connected to two tendons: Tendon–Muscle–Tendon (TMT). The TMT device is composed of a soft (E ∼ 6 kPa) porous (pore diameter: ∼650 μm) polyurethane scaffold, encased within a compliant silicone membrane to prevent medium evaporation. Two tendon-like hollow channels interface the scaffold with a fluidic circuit and a stretching device. We report an optimized protocol to sustain C2C12 adhesion by coating the scaffold with polydopamine and fibronectin. Then, we show the procedure for the soft scaffold inclusion in the TMT device, demonstrating the device’s ability to bear multiple cycles of elongations, simulating a protocol for cell mechanical stimulation. By using computational fluid dynamic simulations, we show that a flow rate of 0.62 mL/min ensures a wall shear stress value safe for cells (<2 Pa) and 50% of scaffold coverage by an optimal fluid velocity. Finally, we demonstrate the effectiveness of the TMT device to sustain cell viability under perfusion for 24 h outside of the CO2 incubator. We believe that the proposed TMT device can be considered an interesting platform to combine several biophysical stimuli, aimed at boosting skeletal muscle tissue differentiation in vitro, opening chances for the development of muscle-powered biohybrid soft robots with long-term operability in real-world environments.
Surface Functionalization of Gold Nanoparticles for Targeting the Tumor Microenvironment to Improve Antitumor Efficiency
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-07-12 , DOI: 10.1021/acsabm.3c00202
KinFaiTan,LionelLianAunIn,PalanirajanVijayarajKumar
Gold nanoparticles (AuNPs) have undergone significant research for their use in the treatment of cancer. Numerous researchers have established their potent antitumor properties, which have greatly impacted the treatment of cancer. AuNPs have been used in four primary anticancer treatment modalities, namely radiation, photothermal therapy, photodynamic therapy, and chemotherapy. However, the ability of AuNPs to destroy cancer is lacking and can even harm healthy cells without the right direction to transport them to the tumor microenvironment. Consequently, a suitable targeting technique is needed. Based on the distinct features of the human tumor microenvironment, this review discusses four different targeting strategies that target the four key features of the tumor microenvironment, including abnormal vasculature, overexpression of specific receptors, an acidic microenvironment, and a hypoxic microenvironment, to direct surface-functionalized AuNPs to the tumor microenvironment and increase antitumor efficacies. In addition, some current completed or ongoing clinical trials of AuNPs will also be discussed below to further reinforce the concept of using AuNPs in anticancer therapy.
Surface Immobilization of Anti-VEGF Peptide on SPIONs for Antiangiogenic and Targeted Delivery of Paclitaxel in Non-Small-Cell Lung Carcinoma
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-29 , DOI: 10.1021/acsabm.3c00224
LindokuhleMNgema,SamsonAAdeyemi,ThashreeMarimuthu,PhilemonNUbanako,WilfredNgwa,YahyaEChoonara
A design has been established for the surface decoration of superparamagnetic iron oxide nanoparticles (SPIONs) with anti-vascular endothelial growth factor peptide, HRH, to formulate a targeted paclitaxel (PTX) delivery nanosystem with notable tumor targetability and antiangiogenic activity. The design methodology included (i) tandem surface functionalization via coupling reactions, (ii) pertinent physicochemical characterization, (iii) in vitro assessment of drug release, anti-proliferative activity, and quantification of vascular endothelial growth factor A (VEGF-A) levels, and (iv) in vivo testing using a lung tumor xenograft mouse model. Formulated CLA-coated PTX-SPIONs@HRH depicted a size and surface charge of 108.5 ± 3.5 nm and −30.4 ± 2.3 mV, respectively, and a quasi-spherical shape relative to pristine SPIONs. Fourier transform infrared (FTIR) analysis and estimation of free carboxylic groups supported the preparation of the CLA-coated PTX-SPIONs@HRH. CLA-coated PTX-SPIONs@HRH exhibited high PTX loading efficiency (98.5%) and sustained release in vitro, with a marked dose dependent anti-proliferative activity in A549 lung adenocarcinoma cells, complimented by an enhanced cellular uptake. CLA-coated PTX-SPIONs@HRH significantly reduced secretion levels of VEGF-A in human dermal microvascular endothelial cells from 46.9 to 35.6 pg/mL compared to untreated control. A 76.6% tumor regression was recorded in a lung tumor xenograft mouse model following intervention with CLA-coated PTX-SPIONs@HRH, demonstrating tumor targetability and angiogenesis inhibition. CLA-coated PTX-SPIONs@HRH enhanced the half-life of PTX by almost 2-folds and demonstrated a prolonged PTX plasma circulation time from a subcutaneous injection (SC). Thus, it is suggested that CLA-coated PTX-SPIONs@HRH could provide a potential effective treatment modality for non-small-cell lung carcinoma as a nanomedicine.
Terbium-Rose Bengal Coordination Nanocrystals-Induced ROS Production under Low-Dose X-rays in Cultured Cancer Cells for Photodynamic Therapy
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-08 , DOI: 10.1021/acsabm.3c00304
DebabrataMaiti,HaoYu,YukiMochida,SeongyeonWon,ShinichiYamashita,MitsuruNaito,KanjiroMiyata,HyunJinKim
X-ray-triggered scintillators (Sc) and photosensitizers (Ps) have been developed for X-ray-induced photodynamic therapy (X-PDT) to selectively destruct deep tissue tumors with a low X-ray dose. This study designed terbium (Tb)-rose bengal (RB) coordination nanocrystals (T-RBNs) by a solvothermal treatment, aiming to reduce photon energy dissipation between Tb3+ and RB and thus increase the reactive oxygen species (ROS) production efficiency. T-RBNs synthesized at a molar ratio of [RB]/[Tb] = 3 exhibited a size of 6.8 ± 1.2 nm with a crystalline property. Fourier transform infrared analyses of T-RBNs indicated successful coordination between RB and Tb3+. T-RBNs generated singlet oxygen (1O2) and hydroxyl radicals (•OH) under low-dose X-ray irradiation (0.5 Gy) via scintillating and radiosensitizing pathways. T-RBNs produced ∼8-fold higher ROS amounts than bare RB and ∼3.6-fold higher ROS amounts than inorganic nanoparticle-based controls. T-RBNs did not exhibit severe cytotoxicity up to 2 mg/mL concentration in cultured luciferase-expressing murine epithelial breast cancer (4T1-luc) cells. Furthermore, T-RBNs were efficiently internalized into cultured 4T1-luc cells and induced DNA double strand damage, as evidenced by an immunofluorescence staining assay with phosphorylated γ-H2AX. Ultimately, under 0.5 Gy X-ray irradiation, T-RBNs induced >70% 4T1-luc cell death via simultaneous apoptosis/necrosis pathways. Overall, T-RBNs provided a promising Sc/Ps platform under low-dose X-PDT for advanced cancer therapy.
Combining Pr3+-Doped Nanoradiosensitizers and Endogenous Protoporphyrin IX for X-ray-Mediated Photodynamic Therapy of Glioblastoma Cells
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-02 , DOI: 10.1021/acsabm.3c00201
GabrielleAMandl,FreesiaVettier,GabriellaTessitore,StevenLMaurizio,KaisBietar,UrsulaStochaj,JohnACapobianco
Glioblastoma multiforme is an aggressive type of brain cancer with high recurrence rates due to the presence of radioresistant cells remaining after tumor resection. Here, we report the development of an X-ray-mediated photodynamic therapy (X-PDT) system using NaLuF4:25% Pr3+ radioluminescent nanoparticles in conjunction with protoporphyrin IX (PPIX), an endogenous photosensitizer that accumulates selectively in cancer cells. Conveniently, 5-aminolevulinic acid (5-ALA), the prodrug that is administered for PDT, is the only drug approved for fluorescence-guided resection of glioblastoma, enabling dual detection and treatment of malignant cells. NaLuF4:Pr3+ nanoparticles were synthesized and spectroscopically evaluated at a range of Pr3+ concentrations. This generated radioluminescent nanoparticles with strong emissions from the 1S0 excited state of Pr3+, which overlaps with the Soret band of PPIX to perform photodynamic therapy. The spectral overlap between the nanoparticles and PPIX improved treatment outcomes for U251 cells, which were used as a model for the thin tumor margin. In addition to sensitizing PPIX to induce X-PDT, our nanoparticles exhibit strong radiosensitizing properties through a radiation dose-enhancement effect. We evaluate the effects of the nanoparticles alone and in combination with PPIX on viability, death, stress, senescence, and proliferation. Collectively, our results demonstrate this as a strong proof of concept for nanomedicine.
Specific Instantaneous Detection of Klebsiella pneumoniae for UTI Diagnosis with a Plasmonic Gold Nanoparticle Conjugated Aptasensor
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-07-12 , DOI: 10.1021/acsabm.3c00369
AniruddhaDeb,MousumiGogoi,TapasKMandal,SwapnilSinha,ParthoSarathiGoohPattader
Urinary tract infection (UTI), which can be caused by various pathogens, if not detected at an early stage can be fatal. It is essential to identify the specific pathogen responsible for UTI for appropriate treatment. This study describes a generic approach to the fabrication of a prototype for the noninvasive detection of a specific pathogen using a tailor-made plasmonic aptamer-gold nanoparticle (AuNP) assay. The assay is advantageous because the adsorbed specific aptamers passivate the nanoparticle surfaces and reduce and/or eliminate false-positive responses to nontarget analytes. Based on the localized surface plasmon resonance (LSPR) phenomena of AuNP, a point-of-care aptasensor was designed that shows specific changes in the absorbance in the visible spectra in the presence of a target pathogen for robust and fast screening of UTI samples. In this study, we demonstrate the specific detection of Klebsiella pneumoniae bacteria with LoD as low as 3.4 × 103 CFU/mL.
Plant-Based, Hydrogel-like Microfibers as an Antioxidant Platform for Skin Burn Healing
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-07-26 , DOI: 10.1021/acsabm.3c00214
FabrizioFiorentini,GiuliaSuarato,MariaSumma,DalilaMiele,GiuseppinaSandri,RosaliaBertorelli,AthanassiaAthanassiou
Natural polymers from organic wastes have gained increasing attention in the biomedical field as resourceful second raw materials for the design of biomedical devices which can perform a specific bioactive function and eventually degrade without liberating toxic residues in the surroundings. In this context, patches and bandages, that need to support the skin wound healing process for a short amount of time to be then discarded, certainly constitute good candidates in our quest for a more environmentally friendly management. Here, we propose a plant-based microfibrous scaffold, loaded with vitamin C (VitC), a bioactive molecule which acts as a protecting agent against UV damages and as a wound healing promoter. Fibers were fabricated via electrospinning from various zein/pectin formulations, and subsequently cross-linked in the presence of Ca2+ to confer them a hydrogel-like behavior, which we exploited to tune both the drug release profile and the scaffold degradation. A comprehensive characterization of the physico-chemical properties of the zein/pectin/VitC scaffolds, either pristine or cross-linked, has been carried out, together with the bioactivity assessment with two representative skin cell populations (human dermal fibroblast cells and skin keratinocytes, HaCaT cells). Interestingly, col-1a gene expression of dermal fibroblasts increased after 3 days of growth in the presence of the microfiber extraction media, indicating that the released VitC was able to stimulate collagen mRNA production overtime. Antioxidant activity was analyzed on HaCaT cells via DCFH-DA assay, highlighting a fluorescence intensity decrease proportional to the amount of loaded VitC (down to 50 and 30%), confirming the protective effect of the matrices against oxidative stress. Finally, the most performing samples were selected for the in vivo test on a skin UVB-burn mouse model, where our constructs demonstrated to significantly reduce the inflammatory cytokines expression in the injured area (50% lower than the control), thus constituting a promising, environmentally sustainable alternative to skin patches.
Antibiotic-Loaded Boron Nitride Nanoconjugate with Strong Performance against Planktonic Bacteria and Biofilms
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-07-20 , DOI: 10.1021/acsabm.3c00247
JianZhang,NishaNeupane,PuspaRajDahal,ShadiRahimi,ZhejianCao,SantoshPandit,IvanMijakovic
Protecting surfaces from biofilm formation presents a significant challenge in the biomedical field. The utilization of antimicrobial component-conjugated nanoparticles is becoming an attractive strategy against infectious biofilms. Boron nitride (BN) nanomaterials have a unique biomedical application value due to their excellent biocompatibility. Here, we developed antibiotic-loaded BN nanoconjugates to combat bacterial biofilms. Antibiofilm testing included two types of pathogens, Staphylococcus aureus and Escherichia coli. Gentamicin was loaded on polydopamine-modified BN nanoparticles (GPBN) to construct a nanoconjugate, which was very effective in killing E. coli and S. aureus planktonic cells. GPBN exhibited equally strong capacity for biofilm destruction, tested on preformed biofilms. A 24 h treatment with the nanoconjugate reduced cell viability by more than 90%. Our results suggest that GPBN adheres to the surface of the biofilm, penetrates inside the biofilm matrix, and finally deactivates the cells. Interestingly, the GPBN coatings also strongly inhibited the formation of bacterial biofilms. Based on these results, we suggest that GPBN could serve as an effective means for treating biofilm-associated infections and as coatings for biofilm prevention.
A Stepwise Targeting and Antibacterial Strategy by Leukocyte Membrane-Based Conjugated Oligomer Nanoparticles
ACS Applied Bio Materials ( IF 0 ) Pub Date : 2023-06-08 , DOI: 10.1021/acsabm.3c00277
XiaoWei,XiaoningLiu,XinyueLiu,JunjieQi,ChengfenXing
Bacterial infection poses an enormous threat to human life and health. The inability of drugs to be effectively delivered to the site of infection and the development of bacterial resistance make the treatment process more difficult. Herein, a stepwise targeted biomimetic nanoparticle (NPs@M-P) with inflammatory tendency and Gram-negative bacterial targeting was designed, which can achieve efficient antibacterial activity under near-infrared triggering. Leukocyte membranes and targeted molecules (PMB) are used to deliver NPs to the surface of Gram-negative bacteria. The heat and ROS released by NPs@M-P can efficiently kill Gram-negative bacteria under low-power near-infrared light. Thus, this multimodal combination therapy strategy has broad promise in fighting bacterial infection and avoiding drug resistance.
补充信息
自引率 H-index SCI收录状况 PubMed Central (PML)
0
投稿指南
期刊投稿网址
http://acsparagonplus.acs.org/psweb/loginForm?code=1000
投稿指南
http://pubs.acs.org/paragonplus/submission/aabmcb/aabmcb_authguide.pdf
投稿模板
http://pubs.acs.org/page/aabmcb/submission/authors.html
参考文献格式
http://endnote.com/downloads/styles/
收稿范围
ACS Applied Bio Materials是一本跨学科期刊,发表原创研究,涵盖生物材料和生物界面的各个方面,包括并超越传统的生物传感,生物医学和治疗应用。该期刊致力于报道应用性质的新的和原创的实验和理论研究,将材料,工程,物理,生物科学和化学领域的知识整合到重要的生物应用中。该期刊特别关注解决结构与功能之间关系的工作,并评估材料在相关环境和生物条件下的稳定性和降解。期刊收录研究方向:用于生物应用的无机,杂化和有机材料,包括抗菌/抗菌和抗癌材料、生物污染和防污材料,生物分子成像/传感材料,仿生材料,自愈合材料,生物组装材料,可持续生物材料,以及合成用于药物输送/靶向,光动力/光热疗法的新材料和现有材料的新合成方法。描述材料和设备的设计和开发,以便在生物能源,生物催化,生物气溶胶,生物电子学,环境和水安全等领域更快地推进新的生物应用。
收录载体
Letters Articles Reviews Invited Spotlights on Applications Forum Articles Comments
平台客服
平台客服
平台在线客服