求lim【1/(n2+π)+1/(n2+2π)+...+1/(n2+nπ)】(n趋向于正无穷)

网友 1

最佳答案

回答者:网友

计算过程如下:

用夹逼定理:

S=lim (n→∞) n2[(1/n2+1)2+2/(n2+2)2+n/(n2+n)2]

=lim (n→∞)n2[(1/n2+n)2+2/(n2+n)2+n/(n2+n)2]≤S

≤lim (n→∞)n2[(1/n2+1)2+2/(n2+1)2+n/(n2+1)2]

=lim (n→∞) n2*[n*(n+1)/2]/(n2+n)2]≤S

≤lim (n→∞) n2[n*(n+1)/2]/(n2+1)21/2≤S≤1/2 S=1/2

n→无穷时,为无限项想加n*min≤所有项相加≤n*max =n*(1/n+n)≤所有项相加的和≤n*(1/n+1)

limn→∞(n2+1)+(n2+2)+…+(n2+n)n(n1)(n2)=limn→∞n3+(1+2+3++n)n33n2+2n=limn→∞n3+n2+n2n33n2+2n=1.

用夹逼定理即可

设原极限为I

lim(n/(n^2+1))*n


我来回答