The pyrolysis kinetics of CCl4 behind reflected shock waves was studied with high-repetition-rate time-of-flight mass spectrometry. For modeling, quantum mechanical calculations were performed to evaluate the dissociation energies of CCl bonds for the different CClx (x = 1 to 4) radicals. Good agreement with the JANAF thermochemical table was found. With the reaction mechanism developed for CCl4 decomposition satisfactory agreement with experimental results was obtained. The investigations show the importance of C2Cl2 formation for understanding the processes of carbon cluster growth leading to carbonaceous particle formation.