Boron nitride carbon nanosheets containing zinc oxide (ZnO/h-BNC) with a hexagonal B–N bond structure were prepared using a scalable, one-step process involving the thermal treatment of glycine, zinc nitrate, graphene oxide and boron oxide. The as-prepared ZnO/h-BNC hybrids were active for both the electrocatalytic reduction of oxygen under alkaline conditions and the photocatalytic oxidation of methyl orange dye. The ZnO/h-BNC nanosheets showed a much improved onset potential and reduced current density compared with ZnO/BCN sheets with a dominant CN bond configuration for the oxygen reduction reaction (ORR). The BNC enriched with h-BN showed an excellent ORR performance, whereas the C
N dominant BCN showed relatively less activity for the ORR, suggesting an intrinsic difference in properties of the BCN-based materials with different bond configurations. The Zn species located inside the h-BNC matrix acted as photocatalytically active centres for the degradation of methyl orange dye under UV irradiation.