In order to synthesize defect free, highly crystalline single phase nanostructured bismuth chalcogenides, we have investigated the effects of several reaction conditions including, solvents, temperatures, reaction time, and reducing agents. A small variation in the reaction method resulted in Bi2Te3 with different morphologies, ranging from nanosize particles, rods, platelets, and tubes to nanosheets. The materials were characterized by powder X-ray crystallography, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray analysis, Raman spectroscopy, and four-probe current (I)–voltage (V) analysis. An optimized reaction condition allowed the synthesis of single-phase, impurity-free hexagonal nanoplates with size varying between 50 nm and 500 nm and thickness varying between 45 nm and 55 nm in a reproducible manner. The Raman spectra of the optimized hexagonal plates and sheets showed infra red (IR)-active modes around 118 cm−1 resulting from symmetry breaking, a characteristic feature of nanostructured Bi2Te3. Additional peaks at 94 cm−1 in the nanosheets, resulting from the surface phonon mode further confirmed the ultrathin Bi2Te3 structures. The I–V measurements on the optimized surface showed an n-type semiconducting behavior. The surface current measured as a function of applied voltage is two orders of magnitude higher than that across the stacked pellet in ambient conditions and much higher compared to previously published data on few quintuplet-thick Bi2Te3 nanofilms. The highlights of this study are the optimal solvothermic reaction conditions and their impact on obtaining defect free, highly crystalline single phase bismuth chalcogenides.
