叶绿体包括哪几素??
好像叶黄素什么的?? 各有什么特点,详细点。。 海带呈褐色。。里面有哪些东西??
最佳答案
回答者:网友
叶绿体是绿色植物细胞内进行光合作用的结构,是一种质体。质体有圆形、卵圆形或盘形3种形态。叶绿体含有叶绿素a、b而呈绿色,容易区别於另类两类质体──无色的白色体和黄色到红色的有色体。叶绿素a、b的功能是吸收光能,通过光合作用将光能转变成化学能。叶绿体扁球状,厚约2.5微米,直径约5微米。具双层膜,内有间质,间质中含呈溶解状态的酶和片层。片层由闭合的中空盘状的类囊体垛堆而成,类囊体是形成高能化合物三磷酸腺苷(ATP)所必需。 大部分高等植物的叶绿体内类囊体紧密堆积。主要含有叶绿素、胡萝卜素和叶黄素,其中叶绿素的含量最多,遮蔽了其他色素,所有呈现绿色。主要功能是进行光合作用。叶绿体(chloroplast)存在于藻类和绿色植物中的色素体之一,光合作用的生化过程在其中进行。因为叶绿体除含黄色的胡萝卜素外,还含有大量的叶绿素,所以看上去是绿色的。褐藻和红藻的叶绿体除含叶绿素外还含有藻黄素和藻红蛋白,看上去是褐色或红色
最佳答案
回答者:网友
叶绿体色素-叶绿体色素的种类及其理化性质 植物叶绿体色素主要有三类:1)叶绿素 2)类胡萝卜素 3)藻胆素。高等植物叶绿体中含有前两类,藻胆素仅存在于藻类植物中。 高等植物体内叶绿素(chlorophyll两种)主要有两种:叶绿素a、b(简写为chla、chlb,其结构式见图7-3),chla通常呈蓝绿色,而chlb呈黄绿色,chlb是chla局部氧化的衍生物。chla是chlb的三倍,二十世纪30年代,知道了叶绿素的分子结构,50年代末期,人工合成了叶绿素a,其它色素也几乎在同时发现。 叶绿体中的类胡萝卜素主要包括胡萝卜素(carotene)和叶黄素(lutein)两种,前者呈橙黄色,后者呈黄色。叶黄素是胡萝卜素的二倍。一般植物叶绿素是类胡萝卜素的三到四倍; 胡萝卜素:C40H56 (有α、β、γ三种同分异构体) 叶黄素: C40H54(OH)2 (同分异构体很多) 这二大类四种色素都不溶于水,而溶于有机溶剂,如乙醇、丙酮等。通常用80%的丙酮或丙酮:乙醇:水为4.5:4.5:1的混合液来提取叶绿素。 按化学性质来说,叶绿素是叶绿酸的酯,在碱的作用下,可使其酯键发生皂化作用,生成叶绿酸的盐,能溶于水,但由于它保留有Mg核的结构,仍保持原来的绿色。而类胡萝卜素中,胡萝卜素是不饱和的碳氢化合物,β—胡萝卜素水解可生成2分子维生素A,叶黄素是由胡萝卜素衍生的二元醇,不能与碱发生皂化反应,根据这一点,可以将叶绿素和类胡萝卜素分开。此外,叶绿素还可以在酸的作用下,其中的Mg被H所代替形成褐色的去Mg叶绿素:去Mg叶绿素能与其他金属盐中的铜、锌、铁盐等代H,又重新呈现绿色,比原来的绿色更稳定。根据这一原理可用醋酸铜处理来保存绿色标本。叶绿体色素-叶绿体色素的功能及其光学性质 1.叶绿体色素的功能 叶绿素和类胡萝卜素都包埋在类囊体膜中,与蛋白质结合在一起,组成色素蛋白复合体, 根据功能来区分,叶绿体色素可分为二类: (1)作用中心色素:叶绿素分子含有一个卟啉环的“头部”和一个叶绿醇的“尾部”,呈蝌蚪型,大卟啉环由四个小吡咯环以四个含有双键的甲烯基(-CH=)连接而成。镁原子居于卟啉环的中央,偏向于带正电荷,与其相联的氮原子则偏向于带负电荷,因而其“头部”具有极性,是亲水的,可以与膜上的蛋白质结合;而其“尾部”是叶绿酸的双羧基被甲醇和叶醇所酯化后形成的脂肪链,具疏水亲脂性,可以与膜上的双卵磷脂层结合,因此,这决定了叶绿素分子在类囊体膜上是有规则的定向排列。极少数具特殊状态的chla分子,其卟啉环上的共轭双键易被光激发而使电子与电荷分离,引起光能转化为电能的重要反应,因此这些chla分子是光合作用的重要色素,称“作用中心色素”; (2)天线色素(聚光色素):没有光化学活性,只有收集光能的作用,包括大部分chla 和全部chlb、胡萝卜素、叶黄素。这些色素排列在一起,象漏斗一样,把光传递集中到作用中心色素,引起光化学反应。类胡萝卜素还是一种保护性色素,在光过强时,可耗散过剩激发能,消除活性氧自由基,防止光合器官被氧化损伤。 2.叶绿体色素的光学性质 (1)色素的吸收光谱 太阳光不是单色光,如果将它通过三棱分光镜,可以看到由赤、橙、黄、绿、青、蓝、紫七种颜色的光所组成的连续光谱,称太阳光谱 (见图7-5)。 图7-5 太阳光的光谱 太阳可见光的波长大约在390~760 nm之间,波长与能量成反比。如果把叶绿体色素提取液放在光源和分光镜中间,就可以看到光谱中有些波段的光被色素吸收了,在光谱上出现黑线带,这种光谱叫叶绿体色素的吸收光谱。从叶绿体色素的吸收光谱可以看出:叶绿体色素对光的吸收具有选择性,叶绿素的吸收光谱的最强吸收带有两个(见图7-6):一个在波长为640~660 nm的红光部分,另一个在430~450 nm的蓝紫光部分。在光谱的橙光、黄光和绿光部分只有不明显的吸收带,其中尤以对绿光的吸收最少。由于叶绿素对绿光吸收最少,所以叶绿素的溶液呈绿色。从图中看出叶绿素a和叶绿素b相比,吸收光谱略有不同:叶绿素a的红光部分的吸收带宽些,偏向长光波方面,吸收峰较高;在蓝紫光部分的窄些,偏向短光波方面,吸收峰较低。 胡萝卜素和叶黄素的吸收光谱与叶绿素不同,其最大吸收带在400~500nm的蓝紫光区(图7-7),不吸收红光等长波光,而且在蓝紫光部分吸收的范围比叶绿素宽一些。 太阳的直射光含红光较多,散射光含蓝紫光较多。阴生植物中有较多的类胡萝卜素,可以利用类胡萝卜素吸收较多的蓝紫光,把能量转给叶绿素,在较弱的光下,仍能够进行一定强度的光合作用,这是植物在长期进化过程中对环境形成的一些适应特性。 (2)荧光现象和磷光现象 将叶绿素溶液盛于试管内,在透射光下看呈绿色,在反射光下看呈深红色(叶绿素 a为血红光,叶绿素b为棕红光),这种现象叫荧光现象。荧光现象产生的原因大致如下: 光具有波粒二象性,对光合作用有效的可见光的波长是在400—700 nm之间,同时光又 是一粒一粒地运动着的粒子流,每一粒子叫一个光子,光子所具有的能量,叫做光量子。光子携带的能量与光的波长成反比。每摩尔光量子具有的能量如下: E=N hυ=Nhc/λ 式中E为能量(千卡),N为阿伏加德罗常数(6.02×1023),h为普朗克常数(6.6262×10-34JS),υ为频率(s-1),c是光速(2.9979×108m s-1),λ是波长(nm)。每摩尔光量子的能量通常是以千卡或爱因斯坦来表示。 当叶绿素分子吸收光量子后,就由低能级的基态提高到了一个高能级的激发态(图7-8)。,根据波尔(Bohr)理论,电子从近核低能轨道跃到远核高能轨道上为激发态(第一、二单线态),激发态的叶绿体分子极不稳定,又迅速由激发态恢复到基态,同时向空间发射光子,称为荧光。恒温下,荧光的光子要比吸收的光子能量低,所以放出的波长更长、颜色更红些,因而使叶绿素溶液在入射光下呈绿色,而在反射光下呈红色。 叶绿素的荧光现象说明叶绿素能被光所激发,而叶绿素分子的激发是其能将光能转变为化学能的前提。在整体植物中,叶绿素所吸收的光能被用于光合作用,因此看不到荧光现象。 当荧光出现后,立即中断光源,色素分子仍能持续短时间的放出“余辉”,称磷光现象。这种现象的原因是处于第一单线态的激发态的叶绿素分子,先以热能的形式丢失掉一部能量,转为一种亚稳定态(第一三线态),从亚稳定态回到基态时放出的光子便为磷光,其寿命比荧光长(荧光为10-9s,磷光为10-3—10-2s),但比荧光弱。
回答
其他回答
叶绿素的成分是: 叶绿体色素有三类:(1)叶绿素,主要包括叶绿素a和叶绿素b;(2)类胡萝卜素,其中有胡萝卜素和叶黄素;(3)藻色素。类囊体膜中含有叶绿素和类胡萝卜素,叶绿体被膜中只含有一些类胡萝卜素(特别是紫黄质,叶黄素的一种,不含叶绿素)。 高等植物叶绿体中的叶绿素(chlorophyll ,chl)主要有叶绿素a 和叶绿素b 两种。 它们不溶于水,而溶于有机溶剂,如乙醇、丙酮、乙醚、氯仿等。 在颜色上,叶绿素a 呈蓝绿色,而叶绿素b 呈黄绿色。 按化学性质来说,叶绿素是叶绿酸的酯,能发生皂化反应。叶绿酸是双羧酸,其中一个羧基被甲醇所酯化,另一个被叶醇所酯化。
回答者:网友